At service

$$
\text { stress at top } \begin{align*}
f_{2} & =\alpha\left(\frac{P}{A}-\frac{P e y_{2}}{I}\right)+\frac{M_{\mathrm{s}}}{z_{2}} \leqslant f_{\mathrm{cs}} \tag{11.3}\\
& =\alpha\left(P / A-P e / z_{2}\right)+M_{\mathrm{s}} / z_{2} \leqslant f_{\mathrm{cs}}
\end{align*}
$$

and

$$
\text { stress at bottom } \begin{align*}
f_{1} & =\alpha\left(\frac{P}{A}+\frac{P e y_{2}}{I}\right)-\frac{M_{s}}{z_{2}} \geqslant f_{\mathrm{ts}} \tag{11.4}\\
& =\alpha\left(P / A+P e / z_{1}\right)-M_{s} / z_{1} \geqslant f_{\mathrm{ts}}
\end{align*}
$$

From equations (11.1) and (11.3) we get

$$
\begin{align*}
& z_{2} \geqslant \frac{M_{\mathrm{s}}-\alpha M_{\mathrm{i}}}{f_{\mathrm{cs}}-\alpha f_{\mathrm{tt}}} \tag{11.5}\\
& z_{1} \geqslant \frac{M_{\mathrm{s}}-\alpha M_{\mathrm{i}}}{\alpha f_{\mathrm{ct}}-f_{\mathrm{ts}}} \tag{11.6}
\end{align*}
$$

11.3.3 Critical sections

The conditions of equations (11.5) and (11.6) must be satisfied at the critical sections. In a post-tensioned, simply supported masonry beam with curved tendon profile, the maximum bending moment will occur at mid-span, at both transfer and service.

Assuming the values of bending moments $M_{s^{\prime}}, M_{d+L}$ and M_{i} all are for mid-span, let

$$
\begin{equation*}
M_{\mathrm{s}}=M_{\mathrm{d}+\mathrm{L}}+M_{\mathrm{i}} \tag{11.7}
\end{equation*}
$$

Substituting the value of M_{s} equations (11.5) and (11.6) become at transfer

$$
\begin{align*}
& z_{2} \geqslant \frac{M_{\mathrm{d}+\mathrm{L}}+(1-\alpha) M_{\mathrm{i}}}{f_{\mathrm{cs}}-\alpha f_{\mathrm{tt}}} \tag{11.8}\\
& z_{1} \geqslant \frac{M_{\mathrm{d}+\mathrm{L}}+(1-\alpha) M_{\mathrm{i}}}{\alpha f_{\mathrm{ct}}-f_{\mathrm{ts}}} \tag{11.9}
\end{align*}
$$

In prestressed or post-tensioned fully bonded beams with straight tendons the critical sections of the beam at transfer will be near the ends. At the end of the beam, moment M_{i} may be assumed to be zero.

Substituting the value of M_{i} in equations (11.5) and (11.6)

$$
\begin{align*}
& z_{2} \geqslant \frac{M_{\mathrm{d}+\mathrm{L}}+M_{\mathrm{i}}}{f_{\mathrm{cs}}-x f_{\mathrm{tt}}} \tag{11.10}\\
& z_{1} \geqslant \frac{M_{\mathrm{d}+\mathrm{L}}+M_{\mathrm{i}}}{x f_{\mathrm{ct}}-f_{\mathrm{ts}}} \tag{11.11}
\end{align*}
$$

Depending on the chosen cable profiles, the values of z_{1} and z_{2} can be found from the equations (11.8) to (11.11).

Having found the values of z_{1} and z_{2} the values of prestressing force and the eccentricity can be found from equations (11.1) and (11.4) as

$$
\begin{gather*}
P_{\min }=\frac{\left[\left(M_{s}-\alpha M_{i}\right)+\left(z_{1} f_{\mathrm{ts}}+\alpha z_{2} f_{\mathrm{tt}}\right)\right] A}{\alpha\left(z_{1}+z_{\nu}\right)} \tag{11.12}\\
\varepsilon_{\max }=\frac{z_{2}}{A}+\frac{M_{\mathrm{i}}-z_{2} f_{\mathrm{tt}}}{P} \tag{11.13}
\end{gather*}
$$

11.3.4 Permissible tendon zone

The prestressing force will be constant throughout the length of the beam, but the bending moment is variable. As the eccentricity was calculated from the critical section, where the bending moment was maximum, it is essential to reduce it at various sections of the beam to keep the tensile stresses within the permissible limit. Since the tensile stresses become the critical criteria, using equations (11.1) and (11.4), we get

$$
\begin{gather*}
e_{1}(\text { lower limit }) \leqslant \frac{z_{2}}{A}+\frac{M_{i}-z_{2} f_{\mathrm{tt}}}{P} \tag{11.14}\\
e_{2}(\text { upper limit }) \leqslant-\frac{z_{1}}{A}-\frac{M_{\mathrm{s}}-z_{1} f_{\mathrm{ts}}}{\alpha P} \tag{11.15}
\end{gather*}
$$

At present, in a prestressed masonry beam, no tension is allowed and since the bending moment due to self-weight will be zero at the end, the lower limit of eccentricity from equation (11.14) will become

$$
\begin{equation*}
e_{1} \leqslant z_{2} / A \tag{11.16}
\end{equation*}
$$

where z_{2} / A is the 'kern' limit.
In the case of a straight tendon this eccentricity will govern the value of prestressing force, and hence from equations (11.1) and (11.4), P can be obtained as

$$
\begin{equation*}
P=\frac{M_{5} A}{\alpha\left(z_{1}+z_{2}\right)} \tag{11.17}
\end{equation*}
$$

